西安嘉云电子科技有限公司是一家专业从事ups电源、精密空调、蓄电池领域产品的企业,公司现主要经营国内外各种品牌的UPS。
Banner
首页 > 新闻动态 > 内容

科电阀控铅酸蓄电池的充放电特性

当停电后山特UPS不间断电源是依靠蓄电池电池储能供电给负载的!常常出现就是需要几小时的工作研究成果付之东流,看着自己配置。山特UPS不间断电源先由电池系统供电企业一段发展时间!停电问题较为频繁的地区主要采用UPS与发电机配合以及供电的方式,

我们可以启动备用发电机继续供电山特UPS!山特也将在三年提供了免费保修期。

标准进行延时机器学习属于自己主机内置带电池机器。所以我们不用外配电池。只有长延时山特UPS不间断电源才可以利用外置电池。来实现长延时问题不断提高供电铅酸蓄电池以一定的电流充、放电时,其端电压的变化如下:

1.放电中电压的变化

电池在放电之前活性物质微孔中的硫酸浓度与极板外主体溶液浓度相同,电池的开路电压与此浓度相对应。放电一开始,活性物质表面处(包括孔内表面)的硫酸被消耗,酸浓度立即下降,而硫酸由主体溶液向电极表面的扩散是缓慢过程,不能立即补偿所消耗的硫酸,故活性物质表面处的硫酸浓度继续下降,而决定电极电势数值的正是活性物质表面处的硫酸浓度,结果导致电池端电压明显下降,见曲线OE段。

随着活性物质表面处硫酸浓度的继续下降,与主体溶液之间的浓度差加大,促进了硫酸向电极表面的扩散过程,于是活性物质表面和微孔内的硫酸得到补弃。在一定的电流放电时,在某一段时间内,单位时间消耗的硫酸量大部分可由扩散的硫酸予以补充,所以活性物质表面处的硫酸浓度变化缓慢,电池端电压比较稳定。但是由于硫酸被消耗,整体的硫酸浓度下降,又由于放电过程中活性物质的消耗,其作用面积不断减少,真实电流密度不断增加,过电位也不断加大,故放电电压随着时间还是缓慢地下降,见曲经EFG段。

随着放电继续进行,正、负极活性物质逐渐转变为硫酸铅,并向活性物质深处扩展。硫酸铅的生成使活化物质的孔隙率降低,加剧了硫酸向微孔内部扩散的困难,硫酸铅的导电性不良,电池内阻增加,这些原因最后导致在放电曲线的G点后,电池端电压急剧下降,达到所规定的放电终止电压。

2充电中的电压变化

在充电开始时,由于硫酸铅转化为二氧化铅和铅,有硫酸生成,因而活性物质表面硫酸浓度迅速增大,电池端电压沿着OA急剧上升。当达到A点后,由于扩散,活性物质表面及微孔内的硫酸浓度不再急剧上升,端电压的上升就较为缓慢(ABC)。这样活性物质逐渐从硫酸铅转化为二氧化铅和铅,活性物质的孔隙也逐渐扩大,孔隙率增加。随着充电的进行,农渐接近电化学反应的终点,即充电曲线的C点。当极板上所存硫酸铅不多,通过硫酸铅的溶解提供电化学氧化和还原所需的Pb2+极度缺乏时,反应的难度增加,当这种难度相当于水分解的难度时,即在充入电量70%时开始析氧,即副反应2H2O一O2+4H+4e,充电曲线上端电压明显增加。当充入电量达90%以后,负极上的副反应,即析氢过程发生,这时电池的端电压达到D点,两极上大量析出气体,进行水的电解过程,端电压又达到一个新的稳定值,其数值取决于氢和氧的过电位,正常情况下该恒定值约为2.6V。